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Dynamical scaling in dissipative Burgers turbulence

T. J. Newman
Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, United Kingdom

~Received 27 January 1997!

An exact asymptotic analysis is performed for the two-point correlation functionC(r ,t) in dissipative
Burgers turbulence with bounded initial data, in arbitrary spatial dimensiond. Contrary to the usual scaling
hypothesis of a single dynamic length scale, it is found thatC containstwo dynamic scales: a diffusive scale
l D;t1/2 for very larger and a superdiffusive scaleL(t);ta for r! l D , wherea5(d11)/(d12). The con-
sequences for conventional scaling theory are discussed. Finally, some simple scaling arguments are presented
within the ‘‘toy model’’ of disordered systems theory, which may be exactly mapped onto the current problem.
@S1063-651X~97!07606-X#
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I. INTRODUCTION

The Burgers equation~BE! has found many applications
in both theoretical and practical senses, over the years s
its birth in 1940. It was originally proposed@1# to describe
wave propagation in weakly dissipative media and, in fac
is now appreciated@2# that within this large class of phenom
ena there are only two model descriptions in the limit
weakly nonlinear waves, namely, the BE and t
Korteweg–de Vries equation@3#. In later years the BE was
scrutinized by the turbulence community as a simplifi
model of Navier-Stokes turbulence and thus ‘‘Burgulenc
was conceived. The applications of the BE were boos
again in 1986 when Kardar, Parisi, and Zhang proposed
the BE with a stochastic source described the nonequilibr
evolution of a class of interface models@4#. Under a nonlin-
ear transformation, this noisy BE was seen to describe
other rich class of systems, namely, directed polymers
random media that have applications in wetting@5#, disor-
dered magnets@6#, and the pinning of flux lines in supercon
ductors @7#. The BE has also received attention as an
proximate model for the formation of large-scale structu
in the universe@8,9#.

Naturally, with such a wide range of physical applic
tions, the BE has attracted a great deal of theoretical at
tion. In the years subsequent to the revolution in critical p
nomena, when the ideas of scaling and universality h
become so prevalent@10#, most theoretical ideas concernin
the BE are formulated within a ‘‘scaling picture.’’ Althoug
this is a convenient language for many phenomena, it m
be realized that without a formal renormalization-group~RG!
description, scaling must be supported by strong phys
insight and not merely ‘‘hand-waving’’ arguments. As a
example, the physics of domain growth in quenched fer
magnets has been very well understood on the basis of
ing arguments@11#, although no explicit RG calculation
have been performed away from the critical temperature.
domain morphology of this problem provides an excelle
basis for scaling since it is clear that the growing dom
scale acts as a well-defined measure of dynamic correlat
~with the caveat that scalar order parameter domain gro
has more subtle scaling due to the existence of a microsc
scale: the domain wall thickness!. The concept of dynamica
551063-651X/97/55~6!/6989~11!/$10.00
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scaling is also supported in this field by a number of ex
calculations~e.g., the one-dimensional Glauber model@12#,
the large-n limit of the time-dependent Ginzburg-Landa
equations@13#!, and a large number of numerical simul
tions.

The existence of scaling is not so well established in
BE, although most workers would agree that it is a con
nient hypothesis, given the complexity of the problem. T
analytic approach used by Burgers@14# and later by Kida
@15# certainly demonstrated the existence of an import
length scale, which may be considered as the mean sh
wave separation. The moot point is whether this is the sin
dominant length in the problem. If so, then one has dyna
cal scaling in its simplest form and many quantities may
subsequently obtained by scaling arguments. What is lack
in the previous work on the BE is an explicit solvable case
which scaling is seen to emerge cleanly. In order to achi
this it is necessary to calculate the form of some correlat
function, which entails more difficulties than studying, f
instance, the mean energy decay. Our intention here i
present such a calculation for a class of initial conditions
which the velocity potential is a bounded, discontinuo
random function. In this case exact calculations are poss
and we may extract the form of the velocity-velocity corr
lation functionE(r ,t) for arbitrary spatial dimensiond. We
find that there exists dynamical scaling, but that it is co
trolled by two length scales rather than one: a diffusive sc
l D for large distances and a superdiffusive scaleL(t) for
small distances. The details underlying this remark will
given below, but the important conceptual point is that if tw
length scales are playing a scaling role, then their ra
~which is, of course, dimensionless! may play a hidden role
in subsequent scaling arguments. Thus simple dimensi
analysis is likely to fail. We shall see an explicit demonst
tion of this as we proceed.

The outline of the paper is as follows. In Sec. II we intr
duce the BE, discuss various choices of initial conditio
and briefly describe a few analytic steps that are requ
before the calculation proper. By adopting the initial con
tion mentioned above, along with some interesting analy
methods, we are able to calculateE(r ,t) and we give explicit
forms for its asymptotic behavior for small and large d
tances. This is presented in the lengthy Sec. IV, Sec.
6989 © 1997 The American Physical Society
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6990 55T. J. NEWMAN
being a warm-up exercise to calculate the mean energy d
~which has previously appeared in print@16#!. In Sec. V we
make a~formally exact! connection between the BE and
popular ‘‘toy model’’ in disordered systems theory. We th
present simple scaling arguments for the toy model that y
partial agreement with the more complicated scaling pict
that emerges from Secs. III and IV. The paper conclude
Sec. VI.

II. DEFINITION OF THE MODEL

The BE is a partial differential equation written in term
of a velocity fieldv(x,t):

] tv5n¹2v2~v•¹!v. ~1!

The field is taken to be irrotational, which allows one
express the equation solely in terms of the velocity poten
f defined viav52¹f. Explicitly one has

] tf5n¹2f1 1
2 ~¹f!2. ~2!

The equation is most commonly discussed in one spatia
mension, in the spirit of its application to nonlinear wav
@8#. However, thed-dimensional generalization given abov
is the canonical choice. One is interested in the evolution
the velocity field from some given initial condition, in th
limit of vanishing viscosity, i.e.,n→0. This leads to strongly
nonlinear behavior, otherwise known as the strong tur
lence limit. We shall make this limit more explicit in term
of a dynamic Reynolds number as we proceed.

The initial conditions we shall study are random functio
v0(x) and as such are defined in terms of a distribution fu
tion P@v0#. Naturally, there is an enormous choice availa
for P. Burgers@14# studied perhaps the most natural, name
a Gaussian distribution of velocities withd-function correla-
tions:

PB@v0#;expS 2
1

2DE ddxv0
2D . ~3!

His analysis was confined tod51, where a controlled ana
lytic study was possible. The main result to emerge was
the velocity field forms into shock waves separated
smooth regions and that the shocks become more dilut
time proceeds, the mean shock wave separation increasi
Ls;t2/3. Dimensional arguments indicate that aboved52
the asymptotic properties are dominated by diffusion~i.e.,
the shock waves disappear and the field diffusively v
ishes!, so that the dominant length scale is then a diffus
scale growing ast1/2. In precisely two dimensions@17#, dif-
fusion is still the dominant process, but logarithmic corre
tions are expected for quantities such as the mean en
decayE(t)[^v2& ~where here and henceforth, angular brac
ets indicate an average over the ensemble of initial co
tions!. Generalizations of the Gaussian form of the init
conditions~for example, defining different power spectra
Fourier space! have been studied previously@8,15,18,19# and
scaling arguments have provided a broad classification
the time dependence of the length scaleLs(t).

One may also consider initial distributions in terms of t
velocity potential. A particular class of these is to divide t
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system into cells of sizel d and to assign a value off0
independently within each cell@16,17#. In this case we may
write the distribution as

P@v0#5)
cells

p~f0,cell!. ~4!

It is important to distinguish between cell distributionsp that
allow bounded or unbounded values of their argument.
shall see that distributions of the former class~such as a
top-hat function or a cutoff exponential distribution! consti-
tute a particular universality class, whereas those of the la
~such as a Gaussian or a power-law distribution! have differ-
ent scaling properties. In the present work we shall be in
ested solely in random initial conditions of the former typ
by demanding the cell distribution function to be defin
only for a finite range of the velocity potential. Furthermor
one may show that all such distributions lead to the sa
asymptotic behavior when the width of the distribution
large ~but still finite! and we therefore concentrate on th
simplest case, namely, a top-hat function.~This is strictly
true for distributions that fall to zero discontinuously.! Ex-
plicitly we choose

p~f0!5
u~F2uf0u!

2F
, ~5!

whereu(z) is the Heaviside unit function@20#.
Analytic progress has been possible in the BE over

years, since for a given initial condition one may exac
integrate the equation. This is due to the Hopf-Cole@21,22#
transformation that linearizes the BE. By definin
w(x,t)5exp@f(x,t)/2n# and substituting into Eq.~2!, one
may see thatw satisfies the linear diffusion equation, whic
is immediately solved in terms of the heat kern
g(x,t)5(4pnt)2d/2exp@2x2/4nt#. Re-expressing the solu
tion in terms of the velocity potential, one has the expli
solution of the BE in the form

f~x,t !52n lnH E ddyg~x2y,t !exp@f0~y!/2n#J . ~6!

The main analytic effort is now to perform averages ov
the initial distributionP. We shall accomplish this by mak
ing the following integral representation of the logarith
function in the above expression:

ln~z!5E
0

`du

u
~e2u2e2uz!. ~7!

~This representation has proved useful@23# in calculations in
disordered systems theory as an alternative to the rep
method and has also been used previously in problems
lated to the BE@16,17,24#!. We therefore have the solutio
of the BE in the form

f~x,t !52nE
0

`du

u
@e2u2c~u,x,t !#, ~8!

where

c5expH 2uE ddyg~x2y,t !exp@f0~y!/2n#J . ~9!
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Our main focus in this work is to calculate the velocit
velocity correlation function defined by

E~r ,t !5 1
2 ^v~r ,t !•v~0,t !&, ~10!

which may be easily related~with the aid of translationa
invariance! to the two-point correlation function for the ve
locity potential via

Er ,t)5 1
4 ¹2C~r ,t !, ~11!

where

C~r ,t !5^@f~r ,t !2f~0,t !#2&. ~12!

The mean energy decay is given simply byE(t)[E(0,t),
and we shall present a condensed derivation of this qua
in the next section before tackling the much harder task
calculatingC(r ,t). Results forE(0,t) have been presente
before@16#, but it is useful to sketch the derivation here
order to set up the necessary formalism required in Sec.
along with revealing the important time scale in the proble

III. CALCULATION OF THE ENERGY DECAY

In previous studies of the BE@8,14,15#, it is more com-
mon to infer the energy decay from a scaling argument o
one has calculated the important dynamic length sc
Ls(t). On dimensional grounds one would like to inf
E;Ls

2/t2. This scaling relation certainly holds true in man
situations, but it is by no means a universal result. We s
attack the problem from the opposite direction by first cal
lating the energy decay explicitly. We shall then read
important length scales from the correlation function in S
IV; comparing the two independent results will then allow
to see if dimensional analysis holds for our particular cho
of the initial distribution.

ExpressingE in terms of the velocity potential, one ma
see from averaging Eq.~2! over the initial distribution that

E5] t^f~x,t !&. ~13!

So in order to determine the energy decay, we need o
calculate the mean velocity potential, which in turn is rela
to the average of the functionc from Eq. ~8!. In fact, a very
similar function will be central in the evaluation of the co
relation function, so it is useful to dedicate a few lines
deriving an explicit expression for̂c&.

In order to perform the average it is necessary to impos
lattice scalea, this is because, generally, the initial conditio
average has the form of a functional integral, which is o
strictly defined on a lattice. We shall find that for all but th
shortest times~set byt0, the time for diffusion over the cel
size l ) this scalea disappears from all physical quantitie
and is replaced by the cell scalel , which defines the corre
lation scale of the initial conditions. Explicitly we define
diffusion length l D5(4nt)1/2 and work in the limit
a< l! l D . In other words, the spatial smearing of the he
kernel is much greater than the cell size. Performing
initial condition average overc using the distribution de-
fined by Eqs.~4! and ~5!, we find
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ln^c&5 l2dE ddylnS 1K0
$E1@ul

dg~y,t !e2K0/2#

2E1@ul
dg~y,t !eK0/2#% D , ~14!

whereE1(z) is the exponential integral@25# and we have
definedK0 to be the effective Reynolds number at zero tim
i.e., K05(typical velocity)3(typical length)/n5F/n. ~We
refer the reader to Appendix A where the initial conditio
average is performed explicitly.! We may simplify this ex-
pression in two steps. First, we make the rescal
u→u(p1/2l D / l )

de2K0/2 and change the integration variab
to s5y2/4nt. Second, we impose the strong turbulence lim
by takingK0@1. This leads us to

ln^c&52
~p1/2l D / l !

d

K0G~d/211!
Ld/2~u!1O~1/K0

2!, ~15!

whereG(z) is theG function @25# and

Lp~u![E
0

`

dssp@12exp~2ue2s!#. ~16!

We refer the reader to Appendix B, where it is shown th
the integral may be evaluated for both small and large val
of u with the result

Lp~u!5H uG~p11!@1222~p12!u1O~u2!#, u!1
@ ln~u!#p11

~p11!
1g@ ln~u!#p1O„@ ln~u!#p21

…, u@1.

~17!

In order to find the mean velocity potential we must pe
form theu integral as given in Eq.~8!. One may see that the
u integral is dominated byu!1 (@1) when the ratio
( l D / l )

d/K0@1 (!1). The former case occurs for very larg
times, and on performing theu integral one obtains a diffu-
sion result, i.e.,E;t2(d/211). So there exists a crossover tim
tc;( l 2/n)K0

2/d beyond which the nonlinearity is irrelevan
and the velocity potential relaxes according to diffusion.
taking the initial Reynolds number to be arbitrarily large, w
may pushtc to arbitrarily late times. The interesting nonlin
ear regime occurs fort0!t!tc in which case one must per
form the u integral using the large-u asymptotic form for
^c&. In this case one finds„using the variable chang
s5@ ln(u)#d/211 and imposing a lower cutoff ofO(1) to the
u integral…

E5Cd

~K0l
dl D
2 !2/~d12!

t2
;t2s, ~18!

where s52(d11)/(d12) and Cd is a complicated
d-dependent constant.

We may reinterpret this expression by defining a tim
dependent Reynolds numberK(t). For a typical velocity we
take the square root of the mean energy decay and fo
typical ~large! length scale we takel D ~which we will justify
a posteriori in Sec. IV!. Then we have
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K~ t !5FCd8K0S ll DD dG1/~d12!

, ~19!

where the constantCd85p2d/2G(d/212) has been chose
for future convenience. We can see thatK(t) decays from its
initial ~very! large value with the power lawt2d/2(d12) until
it becomes of order unity whent;tc . In this nonlinear re-
gime@defined byK(t)@1# we may write the energy decay i
the form

E;
l D
2

t2
K~ t !2, ~20!

which is cast into the form ‘‘expected’’ from dimension
analysis, except that the dimensionless~but time-dependent!
Reynolds number is also present, which invalidates the
diction for the time dependence ofE from dimensional con-
siderations alone.

The introduction of the time-dependent Reynolds num
is useful, but must be justified by independently proving t
l D is the typical~large! length scale in the nonlinear regim
Alternatively one could insist on the dimensional predictio
in which case one would infer the important length scale
beLs; l DK(t). @In fact, we shall see that the dynamic leng
scale; l D /K(t).# To place these results and speculatio
into a proper context one is forced to evaluate the sca
properties of the correlation function, which is a much mo
difficult task than the calculation of the mean energy dec

IV. CALCULATION OF THE CORRELATION FUNCTION

This section constitutes the heart of the paper in that
present the exact asymptotic forms for the correlation fu
tionC(r ,t) in the nonlinear regimet0!t!tc . Unfortunately,
in order to arrive at the required result, one must wa
through a very long and technical calculation. So as no
burden the reader with details, all technical remarks will
relegated to the Appendixes, with only the general flow
the analysis described in the main text. First, we shall de
a general expression forC in the nonlinear regime. In the
subsequent subsections, we shall then analyze the asymp
properties ofC in the limits ofr! l D andr@ l D . As hinted at
before, the main result of this analysis is the emergence
length scale that describes the small distance behavior o
correlation function.

It is convenient to defineC in a symmetric way@cf. Eq.
~12!#

C~r ,t !5^@f~2r /2,t !2f~r /2,t !#2&

52^f~0,t !2&22^f~2r /2,t !f~r /2,t !&. ~21!

By utilizing the integral representation of the logarithm fun
tion twice, we may rewrite the bilinear combinations of v
locity potentials in terms of integrals. This yields

C~r ,t !58n2E
0

`du

u E
0

`dv
v

@C~u,v,0,t !2C~u,v,r ,t !#,

~22!

where
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C~u,v,r ,t !5 K expF2E ddy@ug~y2r /2,t !

1vg~y1r /2,t !#ef0~y!/2nG L ~23!

and we have utilized the property of translational invarian
In an analogous fashion to the averaging performed

Sec. III, the average over the initial conditions may be p
formed in a straightforward manner~see Appendix A!, yield-
ing a complicated expression forC in terms of the exponen-
tial integral function. However, great simplification may b
made by taking the limitK0@1. In this case we reduceC to
the form

ln@C~u,v,r ,t !#52eI ~u,v,R!1O~1/K0
2!, ~24!

wheree5G(d/212)/K(t)d12!1,

I ~u,v,R!5
2

dpd/2E ddy

3H y22 y•R

2 Fue2~y2R/2!22ve2~y1R/2!2

ue2~y2R/2!21ve2~y1R/2!2G J
3$12exp@2ue2~y2R/2!22ve2~y1R/2!2#%,

~25!

and we have definedR[r / l D .
At this point of the discussion it is convenient to consid

the small- and large-distance behaviors ofC separately.

A. Small-distance scaling

To ascertain the small distance properties ofC we need to
perturbatively evaluate the above integrals in a power se
in R!1. Although one may attempt this directly on the for
of the integrals as given by Eqs.~23! and~25!, it is far more
efficient to transform the functionI beforehand into a natura
power series inR2. The procedure for this is described i
Appendix C, with the result

I ~u,v,R!5 (
p50

`

~R2!pFp~u,v !, ~26!

where the functionsFp have the integral form

Fp~u,v !5
~2uv]u]v!

p

G~p11!G~p1d/211!
Lp1d/2~u1v !. ~27!

We are interested in the nonlinear regimeK(t)@1, and in
this case the (u,v) integrals are dominated byu@1 and
v@1. Therefore, we expand the integralLp1d/2 appearing in
Eq. ~27! in powers ofD[ ln(u1v)@1 ~see Appendix B!. The
functionFp may now be expressed as

Fp~u,v !5
~21!p

G~p11!G~p1d/211!Fxp~u,v;p1d/211!

~p1d/211!

1gxp~u,v;p1d/2!1O~Dp1d/222!G , ~28!
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where we have defined

xp~u,v;q!5~uv]u]v!
pDq5 f p~u,v;q!Dq21

1gp~u,v;q!Dq221O~Dq23!. ~29!

More details of these steps, along with the explicit form
the coefficients$ f p% and$gp%, may be found in Appendix D

Now that we have a workable series forI in the nonlinear
regime, it is possible to expandC(u,v,r ,t) in powers of
R2 such that the coefficients are various combinations of
functionsFp . The integrals overu andv may then be per-
formed ~see Appendix E for details! and one has the fina
result

C~r ,t !

8n2
5

2

~d12!
GS d14

d12DK~ t !2R2

2HR21
~d13!

3~d12!2
GS d14

d12DK~ t !2R4

2
4~d15!

45~d12!2~d14!
GS d16

d12DK~ t !4R6

1
4~d15!~d17!

63~d12!2~d14!2~d16!
GS d18

d12DK~ t !6R8

1O~R10!J 1•••. ~30!

Several remarks are now in order. First, the above resu
given ~after much effort! to quite high order inR2. One is
obliged to do this to determine unambiguously the scal
properties of the correlation function. Second, the result
C has been written in such a way as to stress the form of
scaling. It turns out that the dominant term at each orde
R2 vanishes exactly, except for the dominant termat order
R2: This explains why this term stands alone in the abo
expression. The subdominant terms from each order are
zero and are grouped together within the curly brackets.
remaining terms play no role in determining the leading sc
ing behavior and are indicated by the ellipsis. The fact t
the dominant terms vanish means that the leadingR2 term
can play no part in the scaling form of the correlation fun
tion. However, the terms in curly brackets have a natu
scaling form that allows us to read off a dynamic leng
scale. Explicitly we may recast the above expression into
scaling form~neglecting constants!

C~r ,t !;n2F S r

L~ t ! D
2

1S rl DD 2SS r

L~ t ! D G , ~31!

whereS(x) is the scaling function and the dynamic leng
scale isL(t)5 l D /K(t);ta with a5(d11)/(d12).

We see that in the nonlinear regime, the dynamic len
scale is much smaller than the diffusive scalel D , although it
is growing faster. This gives us another view of the crosso
from nonlinear to linear evolution; i.e., the dynamic Re
nolds number becomes of order unity when the scaleL(t)
becomes of the same order asl D .
f
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As a final remark in this section, we may obtain th
velocity-velocity correlation function from Eq.~31! with the
use of Eq.~11!. One finds

E~r ,t !;E~ t !1S n

l D
D 2S̃S r

L~ t ! D . ~32!

Again, it is interesting to see that the mean energy de
E(t) is not part of the scaling function, which explains th
difficulties encountered in Sec. III with simple dimension
analysis. It remains to show the scaling importance of
diffusive scale: This will be accomplished in the next su
section.

B. Large-distance scaling

The scaling form for the correlation function for ver
largeur u may be obtained with relatively little effort. Startin
with C(r ,t) expressed in terms of the functionI (u,v,R) as
given in Eqs.~22!, ~24!, and~25!, we may expressI by the
series~cf. Appendix B!

I ~u,v,R!5 (
n51

`
~21!n11

n!
n2~d/211! (

m50

n

Cm
n umvn2m

3expF2
m

n
~n2m!R2G . ~33!

As C(r ,t) is nonzero forur u→`, it is convenient to measure
correlations with respect to the asymptotic valueC(`,t).
Thus we define

dC[C~`,t !2C~r ,t !

58n2E
0

`du

u E
0

`dv
v

@C~u,v,r ,t !2C~u,v,`,t !#

58n2E
0

`du

u E
0

`dv
v

$exp@2eI ~u,v,R!#

2exp@2eI ~u,v,`!#%. ~34!

From Eq.~33! it is easy to see

I ~u,v,`!5 (
n51

`
~21!n11

n!
n2~d/211!~un1vn!

5
@Ld/2~u!1Ld/2~v !#

G~d/211!
, ~35!

where we have rewritten the sum in terms of the famil
integralLd/2 @using the integral representation shown in E
~C6!#. In the nonlinear regime, we are interested in the la
(u,v) behavior, which according to Eq.~17! gives us

I ~u,v,`!;
1

G~d/212!
$@ ln~u!#d/2111@ ln~v !#d/211%.

~36!

Returning to Eq.~33!, the large-uRu form for I may be
written as

I ~u,v,R!5I ~u,v,`!222~d/211!uve2R2/21•••. ~37!
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Substituting this result into Eq.~34! gives the leading term o
dC as

dC;
4n2e

2d/2
J~K !2e2R2/2, ~38!

where

J~K !5E
c

`

duexp$2K~ t !2~d12!@ ln~u!#d/211%, ~39!

(c being a number of order unity!.
The integral may be performed by steepest descents in

nonlinear regime~details in Appendix B! with the result that
dC has the final asymptotic form~neglecting overall con-
stants!

dC;n2K~ t !~42d2!/dexp@Cd9K~ t !2~d12!/d#exp@2r 2/2l D
2 #,

~40!

whereCd95d(d/211)2(112/d). We see from this expressio
that the diffusion scalel D is the natural scaling length for th
correlation function, for very large distances. One may
certain the range of validity of the above expression by c
culating the contribution from the next term in the ser
@from Eq. ~33!#, and one finds that the above form is val
for ur u@ lK 0

1/d @5(ntc)
1/2@ l D#.

Before ending this rather technical section, we shall re
pitulate the main results obtained. By performing an ex
analysis on the correlation functionC(r ,t) in the nonlinear
regime, we have been able to confirm that there indeed e
dynamical scaling, albeit of a rather subtle type. The sm
distance properties ofC are governed by a scaling leng
L(t); l D /K(t), but the dominant term inC is singular, i.e.,
it may not be included into the scaling form. This indicat
why the form of the mean energy decay found in Sec. III w
not obtainable by simple dimensional analysis. The sc
L(t) is much smaller than the diffusion scale, but gro
faster: The nonlinear regime crosses over to simple diffus
when these two length scales become compatible. The l
distance scaling was found to be more conventional in
the dominant part ofC ~with respect to its asymptotic value!
is a simple function ofr / l D , albeit with a complicated pre
factor, thus indicating thatl D acts as the dynamic scale fo
the correlation function at very large distances.

V. SCALING ARGUMENTS

This section has two purposes. First, we shall show
exact mapping between the solution of the BE and the
energy of a popular toy model@26# in the field of disordered
systems. Second, we shall perform some simple scaling
culations@27# on the latter model to extract the form of th
mean energy decayE(t) in the original BE problem. These
scaling calculations are very similar in spirit to the origin
calculations of Burgers@14# and Kida@15#.

The toy model in question is simply described. Conside
single particle in a potential composed of a harmonic ba
ground plus a random potentialV(x). If the particle is in
contact with a thermal reservoir, we may write the partiti
function for the particle as
he

-
l-

-
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ts
ll
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n
ge
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n
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l

a
-

Z5S bm

2p D d/2E ddxexpH 2bFm2 x21V~x!G J , ~41!

whereb is the inverse temperature and we have normali
Z with respect to the harmonic background. For a given
alization of the disorder potentialV, we may calculate the
free energy of the particle fromFV52(1/b)ln(Z).

At this stage we compare the expression for the free
ergy with the exact solution of the BE~evaluated at the ori-
gin! as given by Eq.~6!. We see that there exists an exa
equivalence between the two quantities if one makes the
lowing connections:f(0,t)↔2FV ,2n↔1/b,t↔1/m, and
f0(x)↔2V(x). This correspondence holds regardless of
particular distribution of initial conditions~or equivalently,
disorder!.

To proceed with the description of the toy model, tw
quantities one may be interested in calculating are
quenched free energyF5^FV& and the mean-square dis
placement of the particle

^x2&5 K 1ZE ddxx2expH 2bFm2 x21V~x!G J L
'^2~2/b!]mln~Z!&52]mF. ~42!

By utilizing the correspondence with the BE, we may rela
the mean-square displacement to the quantityE(t) in the BE.
Explicitly we write

^x2&52]mF522]1/t^f~0,t !&52t2] t^f~0,t !&52t2E~ t !,
~43!

where we have made use of Eq.~13!. So we have been abl
to show that the dimensional prediction for the mean ene
decay, namely,E(t);Ls(t)

2/t2, has a formal interpretation
in terms of the toy model as long as we interpretLs(t) as the
root-mean-square displacement of the particle.

We shall now derive an approximate form forLs(t)
within the toy model formulation. Consider first the top-h
distribution that has been the subject of the present work.
take P@V#5)cellsp(Vcell), with p(V)5u(D2uVu)/2D. The
strong turbulence limit of the BE corresponds to the ze
temperature limit of the toy model. In this case, the parti
will be trapped in the lowest potential-energy minimum
within a given realization. In this case we may estimate
excursion of the particle by calculating the probabili
q(r ,U* ) for the lowest potential site to be located at a d
tancer from the origin and to have an energyU* . This will
be proportional to the probability that all sites within a radi
r of the origin have a potential energy higher thanU* .

For a general potential distributionp(V), we may write

q~r ,U* !;p~U*2mr 2/2! )
uxu,r

E
U*2mx2/2

`

dVxp~Vx!.

~44!

In the BE analogy we are interested in long times, so wit
the toy model we need to takem to be small, i.e., the har
monic background is taken to be very ‘‘flat.’’

Restricting our attention to the top-hat distribution, we s
that a flat harmonic background implies that the minim
energyU* will be close to the lower bound of the rando



ar

n-

ify
-
c
y
f-
n
rm
th
la
th
er

e
b
.
a
th

-
in
i-

sin
l-
f-
s
t
pe
lu

ic
s
o
e-

we

s

en

ng

ale
st,

the
und

cal-
n

lo-

in
m
e-

y-
e-

dy-

not

d in
ors
ve
he
ll
ct

d a
d
ck-
ple
ro-

l
icle
cal
the

55 6995DYNAMICAL SCALING IN DISSIPATIVE BURGERS . . .
potential 2D. We therefore setU*52D1dU, where
udUu!D. The above expression then reduces to

q~r ,U* !;
1

2D )
uxu,r

F12
dU

2D
1

mx2

4D G . ~45!

It is now straightforward to exponentiate the term in squ
brackets so as to transform the product overx as a spatial
integral in the exponential. Takingmr 2!D ~which is justi-
fied a posterioriby the form ofr typ given below! allows the
integral to be performed simply, yielding the final result

q~r ,d!;
1

2D
expF2c1~d!

d

DS rl D
d

1c2~d!
mr d12

l dD G , ~46!

wherec1 andc2 are constants. For this distribution of pote
tial minima at distancer from the origin, we can read off a
scaling relation between the typical value ofr and m,
namely,

r typ;S l dDm D 1/~d12!

. ~47!

Making the correspondence with the BE, we ident
r typ↔Ls(t) andm/D↔( l D

2K0)
21. Combining the above re

sult with Eq. ~42!, we see that we have derived the corre
form of the mean energy decay as calculated previousl
Sec. III @cf. Eq. ~18!#, although the precise value of the pre
actor may not be obtained by this simple scaling argume

The above result may also be cast into the fo
Ls(t); l DK(t). This is guaranteed under the scaling hypo
esis, but what is interesting is that such a length scale p
no role in the actual dynamical scaling as defined by
behavior of the two-point correlation function. In oth
words, although we may calculateLs ~or ratherr typ) from
scaling considerations of the toy model, this length scal
not a dynamic scaling length; for instance, it could not
used to collapse the correlation function in a scaling plot

To end this section, we mention that the toy model m
be analyzed for other types of distribution. If one takes
disorder distribution to be of the cellular type, withp a
Gaussian, then one may rederive the result of Kida@15#,
namely, thatLs(t) is a diffusive scale up to logarithmic cor
rections. Alternatively one may consider the toy model
d51 with a disorder distribution corresponding to the orig
nal Burgers choice, namely,P@V#;exp@2*dx(dV/dx)2#. This
particular scenario has been studied in detail recently, u
a replica approach@28#. Although the essential Burgers sca
ing @Ls(t);t2/3# is easily recovered, the calculation of pre
actors is more difficult. It is an important test of variou
approaches as to whether they can quantitatively predict
correct prefactor. As far as we are aware, this is still an o
problem, although there are a number of approximate va
in the literature@14,16,28#.

VI. CONCLUSION

This paper has been concerned with proving dynam
scaling for Burgers equation with random initial condition
Exact calculations have been possible for a distribution
the initial velocity potential, which has a large but finite r
e
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gion of support and is uncorrelated in space. In Sec. III
calculated the mean energy decayE(t) in the nonlinear re-
gime @i.e., in the temporal regime in which the Reynold
numberK(t)@1#. Explicitly we found

E;
l D
2

t2
K~ t !2. ~48!

Dimensional arguments applied at this stage would th
predict that there exists a dynamical length scaleLs(t)
;l DK(t), wherel D;(nt)1/2 is the diffusion scale.

In Sec. IV we set out to establish this result by calculati
the two-point correlation functionC(r ,t). This task is non-
trivial, but we were able to extract the small- and large-sc
asymptotics ofC. There were two unexpected results. Fir
the small- and large-scale forms ofC, although assuming a
scaling form, have different dynamic length scales. For
small-distance scaling, the dynamic length scale was fo
to be L(t); l D /K(t) and the dominant part ofC in this
spatial regime is singular and cannot be included in the s
ing function. In terms of the velocity-velocity correlatio
functionE(r ,t), this singular piece is exactlyE(t), with the
scaling part of the correlation function describing the non
cal properties ofE, i.e.,

E~r ,t !;E~ t !1S n

l D
D 2S̃S r

L~ t ! D . ~49!

The scaling functionS̃(x) has a power series expansion
x2, the first four coefficients of which may be inferred fro
Eq. ~30!. The large-distance scaling was found to be d
scribed by the diffusive scalel D , which confirmeda poste-
riori the choice of this length scale in constructing the d
namic Reynolds number. The leading term in this larg
distance regime was found to be

dC;n2K~ t !~42d2!/dexp@Cd9K~ t !2~d12!/d#exp@2r 2/2l D
2 #.

~50!

The second unexpected result is that neither of the two
namic length scales coincides with the scaleLs found from
dimensional considerations ofE(t). This is explained in part
by the fact that the local energy decay is singular and
contained in the scaling form forE. This result is similar to
the cases in critical phenomena where caution is require
reading off scaling dimensions from composite operat
~such asv2) @10#. Generally, these composite operators ha
their own scaling dimension, which may be related to t
scaling of a two-point correlation function only via a sma
distance expansion~otherwise known as an operator produ
expansion.!

In Sec. V we introduced a mapping between the BE an
toy model that is well known from the field of disordere
systems, that being a thermal particle in a harmonic ba
ground along with a random potential. By considering sim
scaling calculations on the toy model, we were able to rep
duce the previous result forE as found in Sec. III~up to
prefactors!. The scaleLs appears naturally in the toy mode
~as the typical root-mean-square displacement of the part!
and it is interesting that this scale is not a true dynami
scaling length in that it may not be used to collapse
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6996 55T. J. NEWMAN
two-point correlation function in a scaling plot. It would b
interesting to understand this result more fully either by p
forming similar calculations to those described here for ot
choices of initial distributions or by calculating higher-ord
correlation functions to see if more exotic forms of scali
~such as multiscaling or intermittency! are present in thes
simple models. The connection between the toy model
the BE may be of some mutual aid in both fields, at leas
supplying an intuitive understanding of these complemen
problems.
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APPENDIX A

In this appendix we outline the initial condition avera
over the function

c5expH 2uE ddyg~y,t !exp@f0~y!/2n#J , ~A1!

where we have taken advantage of translational invaria
and setx50. ~In fact, the translational invariance holds on
for times greater thant0 since clearly the cellular initial con
ditions allow only invariance under discrete transformatio
over a periodl . Once the heat kernel has diffused beyond
cell scale, the continuous translational invariance is rec
ered.! The initial distribution is as described in Sec.
namely, we divide space into cells of volumel d and within
each cell we assign the velocity potential to be an indep
dent random number drawn from a top-hat distribution
width 2F. Explicitly we have

^c&5E Df0~yi !P@f0#c@f0#

5)
Y

1

2FE
2F

F

df0~Y!

3expH 2uexp@f0~Y!/2n# (
yiPY

g~y,t !J , ~A2!

whereY labels the cells andyi labels the discretized point
~on a scale of the lattice cutoffa) within a given cell. The
integrals are easily performed in terms of the exponen
integral @25#

1

2FE
2F

F

df0exp@2Aexp„f0/2n…#

5
1

K0
@E1~Ae

2K0/2!2E1~Ae
K0/2!#, ~A3!

whereK05F/n is the initial Reynolds number as defined
the text. To reach the result shown in the text, namely,
~14!, two more steps are required. First, the above resu
-
r

d
n
ry

d
-
d

ce

s
e
v-

n-
f

l

.
is

re-exponentiated, so that the product over cells in Eq.~A2!
may be written in the exponent as a sum over cells. Seco
we use the fact that for times greater thant05 l 2/n, the heat
kernel has smeared beyond the cell scale, so that the
over cells~on a scalel ) and points within cells~on a scale
a) may be replaced once more by a continuum spatial in
gral. In this way one finally arrives at the result given in t
main text.

APPENDIX B

This appendix is dedicated to the asymptotic evaluation
two integrals that appear in the main text. The first integ
Lp(u) is defined in Eq.~16! and is used repeatedly in th
present work. We have

Lp~u![E
0

`

dssp@12exp~2ue2s!#. ~B1!

We require both the small- and large-u forms for this inte-
gral. The former is trivially obtained by expanding the int
grand as a power series inu. The asymptotic expansion o
this integral foru@1 is less simple. For the precision re
quired in the calculations, we need both the dominant a
subdominant terms. To extract these we proceed as follo
We notice that for largeu, the second factor in the integran
behaves very much like a step function centered
s5 ln(u). Thus the dominant term will arise from replacin
this factor by u„ln(u)2s… and the subdominant term wil
arise from finding the leading error made by this approxim
tion.

So explicitly we write

Lp~u!5E
0

ln~u!

dssp1E
0

`

dsspT~s!, ~B2!

where T(s)5@12exp(2ue2s)#2u„ln(u)2s…. The first term
gives the dominant contribution to the integral, which equ
@ ln(u)#p11/(p11). To extract the main contribution from th
second term, we replacesp by @ ln(u)#p and perform the inte-
gral overT(s):

E
0

`

dsspT~s!5@ ln~u!#pE
0

`

dsT~s!1O„@ ln~u!#p21
…

5@ ln~u!#pH E
ln~u!

`

ds@12exp~2ue2s!#

2E
0

ln~u!

dsexp~2ue2s!J 1O„@ ln~u!#p21
….

~B3!

The first integral in the curly brackets may be evaluated s
ply ~using the variable changeq5e2s) to give
(n51

` (21)n11/nn!, while the same variable change reduc
the second integral to

E
0

ln~u!

dsexp~2ue2s!5E
1

udq

q
e2q5E1~1!1O~e2u/u!.

~B4!
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Using the series expansion for the exponential integral@25#,
we may combine the two results to give

E
0

`

dsspT~s!5g@ ln~u!#p1O„@ ln~u!#p21
…, ~B5!

whereg50.577 22 . . . is Euler’s constant. This is the re
quired result for the subdominant terms.

The second integral appears in the evaluation of the la
distance scaling in Sec. IV. Referring to Eq.~39!, we need to
evaluate

J~K !5E
c

`

duexp$2K~ t !2~d12!@ ln~u!#d/211%, ~B6!

in the nonlinear regimeK(t)@1. The constantc is a number
of order unity and arises since we have used the large-u form
for the integrand, and so we must cut off the integral at
lower end. For notational convenience let us consider

Mb~N!5E
1

`

duexp$2~1/N!@ ln~u!#b% ~B7!

for N@1, with b.1. Then we can retrieve the integral o
interest fromJ(K)5Md/211(K

d12).
In order to cast the integral into a form suitable for stee

est descents, we make the variable chan
x5N21/(b21)ln(u). We then have

Mb~N!5N1/~b21!E
0

`

dxexp@2N1/~b21!~xb2x!#. ~B8!

This integral is easily performed by steepest descents to
~neglecting overallb-dependent constants!

Mb~N!;N1/2~b21!expF ~b21!

b SNb D 1/~b21!G , ~B9!

from which one may retrieve the form given in Eq.~40!.

APPENDIX C

In this appendix we give details of the manipulation
I (u,v,R) into a series expansion for small and largeR. As
given in Eq.~25!, we have

I ~u,v,R!5
2

dpd/2E ddyH y2
2
y•R

2 Fue2~y2R/2!22ve2~y1R/2!2

ue2~y2R/2!21ve2~y1R/2!2G J
3$12exp@2ue2~y2R/2!22ve2~y1R/2!2#%.

~C1!

As a first step, we expand the exponential term in the sec
factor of the integrand to obtain

I5 (
n51

`
~21!n11

n!
Ln~u,v,R!, ~C2!
e

e

-
e

ve

nd

where

Ln~u,v,R!5
2

dpd/2E ddyH y2@ue2~y2R/2!21ve2~y1R/2!2#n

2
y•R

2
@ue2~y2R/2!21ve2~y1R/2!2#n21

3@ue2~y2R/2!22ve2~y1R/2!2#J . ~C3!

This cumbersome expression may be simplified greatly
expanding the terms in square brackets as binomial serie
powers ofu and v and then performing the Gaussian int
grals overy. One is then left with

L~u,v,R!5n2~d/211! (
m50

n

Cm
n umvn2mexpF2

m

n
~n2m!R2G .

~C4!

Combining Eqs.~C2! and ~C4! reproduces the large-R form
given in Eq.~33!.

In order to castL into a small-R form, we expand the
exponential terms in Eq.~C4! and then binomially resum the
series inu andv. This leaves us with

L~u,v,R!5n2~d/211! (
p50

`
~2R2!p

npp!
~uv]u]v!

p~u1v !n.

~C5!

We now substitute this expression back into Eq.~C2! and
make the integral representation

n2~p1d/211!5@G~p1d/211!#21E
0

`

dssp1d/2e2ns.

~C6!

This allows the sum overn to be performed as that for
geometric series and we are left with

I ~u,v,R!5 (
p50

`
~2R2!p

G~p11!G~p1d/211!

3~uv]u]v!
pLp1d/2~u1v !, ~C7!

as given by Eqs.~26! and ~27! in the main text.

APPENDIX D

This appendix will give details of the rewriting of th
functionFp(u,v) in moving from Eq.~27! to Eq.~28! in the
main text. As given by Eq.~27!, we have defined

Fp~u,v !5
~2uv]u]v!

p

G~p11!G~p1d/211!
Lp1d/2~u1v !.

~D1!

Since we are interested in the nonlinear regime, we m
expand the integralL as shown in Appendix B, namely,
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Lp1d/2~u1v !5
Dp1d/211

~p1d/211!
1gDp1d/21O~Dp1d/221!,

~D2!

where D[ ln(u1v). Then we define the quantitie
xp(u,v;q)5(uv]u]v)

pDq, which allow us to rewrite the
above expression as

Fp~u,v !5
~21!p

G~p11!G~p1d/211!Fxp~u,v;p1d/211!

~p1d/211!

1gxp~u,v;p1d/2!1O~Dp1d/222!G , ~D3!

which is of the form given in Eq.~28! in the main text.
The above steps are largely a matter of redefinition

various quantities. We must extract explicit forms for t
functions xp(u,v;q). Clearly the zeroth function is jus
x0(u,v;q)5Dq. The subsequent functions may be written

xp~u,v;q!5~uv]u]v!
pDq5 f p~u,v;q!Dq21

1gp~u,v;q!Dq221O~Dq23!. ~D4!

In order to determine unambiguously the scaling proper
of the correlation function, it is sufficient to explicitly evalu
ateC to O(R6). However, given the singular nature of th
scaling in this problem, we shall proceed to calculate
O(r 8) terms as well, as a useful check. This in turn nece
tates calculating the coefficientsf p and gp for p51,2,3,4.
With the application of brute force algebra, we obtain

f 1~u,v;q!52q
uv

~u1v !2
,

f 2~u,v;q!51q
uv

~u1v !4
~u224uv1v2!,

f 3~u,v;q!52q
uv

~u1v !6
~u4226u3v

166u2v2226uv31v4!,

f 4~u,v;q!51q
uv

~u1v !8
~u62120u5v11191u4v2

22416u3v311191u2v42120uv51v6!,

~D5!

and

g1~u,v;q!52~q21! f 1 ,

g2~u,v;q!522~q21! f 22q~q21!
u2v2

~u1v !4
,

g3~u,v;q!523~q21! f 3

1q~q21!
u2v2

~u1v !6
~17u2252uv117v2!,
f

s

s

e
i-

g4~u,v;q!524~q21! f 42q~q21!
u2v2

~u1v !8

3~129u421648u3v13538u2v2

21648uv31129v4!. ~D6!

APPENDIX E

In this final appendix we give a brief description of th
final steps required in order to perform theu andv integrals
so as to derive the final form of the correlation functio
given in Eq. ~30!. Referring to the main text, we see th
combining Eqs.~22!, ~24!, and ~26!, we may write the cor-
relation function in the form

C~r ,t !58n2E
c

`du

u E
c

`dv
v
exp@2eF0~u,v !#

3H 12expF2e (
p51

`

R2pFp~u,v !G J , ~E1!

wherec is a number of order unity, required simply to cut o
the integrals at their lower limits, given we are using t
asymptotic form for the integrand in the nonlinear regim
The remaining steps are easy to describe, although ra
tedious to perform in practice. We expand the exponentia
the last factor of the above integrand in powers ofR and then
integrate overu andv. We shall explicitly demonstrate thi
for the dominant part of theO(R2) term. Using the
asymptotic forms of the functionsF0 andF1 from Appendix
D, we have

O~R2!;
28n2e

~d/212!G~d/212!
E
c

`du

u E
c

`dv
v
f 1~u,v;21d/2!

3Dd/211expF2
e

G~d/212!
Dd/211G . ~E2!

Remembering thate5G(d/212)/K(t)d12 and using the
form of f 1 from Appendix D, we may rewrite this term as

@O~R2! term#;8n2K~ t !2~d12!E
c

`

duE
c

`

dv~u1v !22

3Dd/211exp@2K~ t !2~d12!Dd/211#.

~E3!

Now the double integral has the form

E
c

`

duE
c

`

dv~u1v !22A~u1v !5E
c

`

duE
u

`

dww22A~w!

.E
c

`du

u
A~u!, ~E4!

where the last step was achieved using integration by p
on u. The final integral may be easily performed by subs
tuting x5 ln(u), thus yielding the first term in Eq.~30!.
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The integrals required at higher orders inR2 may all be
performed by changing variables from (u,v) to
(u,w5u1v) and performing the appropriate number of i
tegrations by parts onu. In general, the ‘‘boundary’’
terms do not vanish, but they are negligible in the limit
interest, namely,K(t)@1. „This is because the gener
form of the functionA(w), which appears as a spectat
in these integral manipulations, is proportional
exp$2K(t)2(d12)@ln(w)#d/211%, which decays faster than an
u-
,

d

f

power.… A final point worth mentioning is that the subdom
nant terms~i.e., those terms involving the coefficientsgp)
are required since the (u,v) integrals over the leading term
containingf p all vanish forp.1. This leads to the unusua
scaling form described in the text, in which the domina
term may not be cast as part of the scaling function, a
explains our cautionary calculation of theO(R8) term, which
indeed confirms this singular scaling, i.e., the integrals o
f 4 vanish exactly.
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