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Dynamical scaling in dissipative Burgers turbulence
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An exact asymptotic analysis is performed for the two-point correlation fundignt) in dissipative
Burgers turbulence with bounded initial data, in arbitrary spatial dimergidbontrary to the usual scaling
hypothesis of a single dynamic length scale, it is found @atontainstwo dynamic scales: a diffusive scale
Io~tY2 for very larger and a superdiffusive scale(t)~t® for r<lp, wherea=(d+1)/(d+2). The con-
sequences for conventional scaling theory are discussed. Finally, some simple scaling arguments are presented
within the “toy model” of disordered systems theory, which may be exactly mapped onto the current problem.
[S1063-651X97)07606-X]
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I. INTRODUCTION scaling is also supported in this field by a number of exact

The Burgers equatiofBE) has found many applications, fr?eICT;?“g:SEﬁﬁ?{;P ?hznf.ﬁér?;gsé%rﬂnfléqgeg moﬁm]a
in both theoretical and practical senses, over the years since 9 ! P inzburg-Landau

its birth in 1940. It was originally proposdd] to describe ﬁgg:ltlons[m]), and a large number of numerical simula-

wave propagqtion in Weakly C!issipative media and, in fact, it The existence of scaling is not so well established in the
is now appreciatefZ] that within this large class of phenom- BE, although most workers would agree that it is a conve-

ena there are only two model descriptions in the limit of .o hypothesis, given the complexity of the problem. The
weakly nonlinear waves, namely, the BE and thegnavtic approach used by Burgdib4] and later by Kida
Korte_w_eg—de Vries equatiofi8]. In later years the BE was [15] certainly demonstrated the existence of an important
scrutinized by the turbulence community as a simplifiediength scale, which may be considered as the mean shock
model of Navier-Stokes turbulence and thus “Burgulence”wave separation. The moot point is whether this is the single
was conceived. The applications of the BE were boostedominant length in the problem. If so, then one has dynami-
again in 1986 when Kardar, Parisi, and Zhang proposed thafal scaling in its simplest form and many quantities may be
the BE with a stochastic source described the nonequilibriursubsequently obtained by scaling arguments. What is lacking
evolution of a class of interface mod¢®]. Under a nonlin-  in the previous work on the BE is an explicit solvable case in
ear transformation, this noisy BE was seen to describe arwhich scaling is seen to emerge cleanly. In order to achieve
other rich class of systems, namely, directed polymers irhis it is necessary to calculate the form of some correlation
random media that have applications in wettifg, disor-  function, which entails more difficulties than studying, for
dered magnets5], and the pinning of flux lines in supercon- instance, the mean energy decay. Our intention here is to
ductors[7]. The BE has also received attention as an appresent such a calculation for a class of initial conditions in
proximate model for the formation of large-scale structuresvhich the velocity potential is a bounded, discontinuous,
in the universd8,9]. random function. In this case exact calculations are possible
Naturally, with such a wide range of physical applica-and we may extract the form of the velocity-velocity corre-
tions, the BE has attracted a great deal of theoretical attedation functionE(r,t) for arbitrary spatial dimensiod. We
tion. In the years subsequent to the revolution in critical phefind that there exists dynamical scaling, but that it is con-
nomena, when the ideas of scaling and universality havéolled by two length scales rather than one: a diffusive scale
become so prevalent0], most theoretical ideas concerning |p for large distances and a superdiffusive schalg) for
the BE are formulated within a “scaling picture.” Although small distances. The details underlying this remark will be
this is a convenient language for many phenomena, it muggiven below, but the important conceptual point is that if two
be realized that without a formal renormalization-gré¢Rgs) length scales are playing a scaling role, then their ratio
description, scaling must be supported by strong physicalwhich is, of course, dimensionlgssay play a hidden role
insight and not merely “hand-waving” arguments. As anin subsequent scaling arguments. Thus simple dimensional
example, the physics of domain growth in quenched ferroanalysis is likely to fail. We shall see an explicit demonstra-
magnets has been very well understood on the basis of scdlen of this as we proceed.
ing argumentg11], although no explicit RG calculations The outline of the paper is as follows. In Sec. Il we intro-
have been performed away from the critical temperature. Thduce the BE, discuss various choices of initial conditions,
domain morphology of this problem provides an excellentand briefly describe a few analytic steps that are required
basis for scaling since it is clear that the growing domainbefore the calculation proper. By adopting the initial condi-
scale acts as a well-defined measure of dynamic correlatiori®n mentioned above, along with some interesting analytic
(with the caveat that scalar order parameter domain growtmethods, we are able to calcul&iér,t) and we give explicit
has more subtle scaling due to the existence of a microscopforms for its asymptotic behavior for small and large dis-
scale: the domain wall thickngsd he concept of dynamical tances. This is presented in the lengthy Sec. IV, Sec. llI
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being a warm-up exercise to calculate the mean energy decaystem into cells of sizé® and to assign a value o,
(which has previously appeared in prr]). In Sec. V we independently within each cdll6,17. In this case we may
make a(formally exacj connection between the BE and a write the distribution as

popular “toy model” in disordered systems theory. We then

present simple scaling arguments for the toy model that yield Plv.]= 4
partial agreement with the more complicated scaling picture [vol ;!;'L P(Po,ce)- @

that emerges from Secs. Ill and IV. The paper concludes in o o
Sec. VI. It is important to distinguish between cell distributigmshat

allow bounded or unbounded values of their argument. We
Il. DEEINITION OF THE MODEL shall see that distributions of the former classich as a
top-hat function or a cutoff exponential distributjoconsti-
The BE is a partial differential equation written in terms tute a particular universality class, whereas those of the latter

of a velocity fieldv(x,t): (such as a Gaussian or a power-law distributioave differ-
) ent scaling properties. In the present work we shall be inter-
dv=vVVv—(v-V)v. (1) ested solely in random initial conditions of the former type,

) ) ) ] ) by demanding the cell distribution function to be defined
The field is taken to be irrotational, which allows one 10 oy for a finite range of the velocity potential. Furthermore,
express the equation solely in terms of the velocity potentiahne may show that all such distributions lead to the same
¢ defined viav=—V¢. Explicitly one has asymptotic behavior when the width of the distribution is
1 large (but still finite) and we therefore concentrate on the
Kp=vVid+3 (V)" @ sin?plest case, namely, a top-hat functidfihis is strictly
The equation is most commonly discussed in one spatial gifue for distributions that fall to zero discontinuoujlyx-
mension, in the spirit of its application to nonlinear WavespIICItIy we choose
[8]. However, thed-dimensional generalization given above 0D —| o)
is the canonical choice. One is interested in the evolution of p(¢o) = By S
the velocity field from some given initial condition, in the
limit of vanishing viscosity, i.e.y—0. This leads to strongly \yhere g(z) is the Heaviside unit functiof20].
nonlinear behavior, otherwise known as the strong turbu-  apaiytic progress has been possible in the BE over the
lence limit. We shall make this limit more explicit in terms years since for a given initial condition one may exactly
of a dynamic Reynolds number as we proceed. _integrate the equation. This is due to the Hopf-Cj@l&,22]
The initial conditions we shall study are random functionsy;ansformation  that linearizes the BE. By defining
Vo(X) and as such are defined in terms of a distribution fU”CW(x,t):exp[¢(x,t)/2v] and substituting into Eq(2), one

tion P[vo]. Naturally, there is an enormous choice availableyay see thatw satisfies the linear diffusion equation, which
for P. Burger 14] studied perhaps the most natural, namely,is ‘immediately solved in terms of the heat kernel
a Gaussian distribution of velocities withfunction correla-  4(x t)=(47pt) - 92exd —x%/4vt]. Re-expressing the solu-

tions: tion in terms of the velocity potential, one has the explicit

1 solution of the BE in the form
» _ = qdwn2
Pg[ Vo] exy{ ZDJ d®xvq

His analysis was confined =1, where a controlled ana- ] . )
lytic study was possible. The main result to emerge was that 1he main analytic effort is now to perform averages over
the velocity field forms into shock waves separated bythe initial distributionP. We shall accomplish this by mak-
smooth regions and that the shocks become more dilute 439 the following integral representation of the logarithm
time proceeds, the mean shock wave separation increasing #$ction in the above expression:

L~t%3. Dimensional arguments indicate that abaVe 2 du

the asymptotic properties are dominated by diffusioa., |n(z)=f —(e " U—e Uy, %

the shock waves disappear and the field diffusively van- o u

ishes, so that the dominant length scale is then a diffusion
scale growing as*2 In precisely two dimensiongl7], dif-

®

. 3

¢(x,t)=2vanddyg(x—y,t)exp[%(y)/Zv] . (6

(This representation has proved us¢f8] in calculations in
fusion is still the dominant process, but logarithmic correc—disordered systems theory as an altemnative to the replica
P ' 9 method and has also been used previously in problems re-

tions are expected for quantities such as the mean ener )
decay&(t)=(v) (where here and henceforth, angular brack—qgted to the BH16,17,24). We therefore have the solution

I 2 .of the BE in the form
ets indicate an average over the ensemble of initial condi-
tions). Generalizations of the Gaussian form of the initial
conditions(for example, defining different power spectra in ¢(X,t)=2Vf
Fourier spacehave been studied previougl,15,18,19and 0
scaling arguments have provided a broad classification foghere
the time dependence of the length scialét).

One may also consider initial distributions in terms of the B
velocity potential. A particular class of these is to divide the y= exp[ - Uf dlyg(x—y.tyexd go(y)/2v] (. (9)

©

du
T[e_u_lﬂ(u,x,t)], (8)
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Our main focus in this work is to calculate the velocity- al 1 d /
velocity correlation function defined by In(yy=1" j d y|n<K—O{E1[U| gy,tye o]
E ,t —1 ,t . O,t , 10
(1= 1 (u(r.0-w(0D) @ Efu(y0e 2] | a

which may be easily relate@with the aid of translational

invariance to the two-point correlation function for the ve- \here E,(2) is the exponential integrd25] and we have
locity potential via definedK, to be the effective Reynolds number at zero time,
i.e., Ko=(typical velocity)x (typical length)b=®/v. (We
Er,t)= 3 V2C(r,t), (11)  refer the reader to Appendix A where the initial condition
average is performed explicityWe may simplify this ex-
where pression in two steps. First, we make the rescaling
u—u(m*4p/1)% K2 and change the integration variable
C(r.t)=([o(r,t)— (0,)]?). (120 to s=y?/4vt. Second, we impose the strong turbulence limit
by takingKy>1. This leads us to
The mean energy decay is given simply Bft)=E(0,t),
and we shall present a condensed derivation of this quantity (A N)8
in the next section before tackling the much harder task of In{ep)=— de/z(U)JFO(l/KS), (19
calculatingC(r,t). Results forE(0,t) have been presented 0
before[16], but it is useful to sketch the derivation here in
order to set up the necessary formalism required in Sec. I\){V
along with revealing the important time scale in the problem.

herel'(z) is thel" function[25] and

Lp(u)Ef ds[1—exp—ue 9)]. (16
I1l. CALCULATION OF THE ENERGY DECAY 0

In previous studies of the BEB,14,19, it is more com- We refer the reader to Appendix B, where it is shown that
mon to infer the energy decay from a scaling argument oncéhe integral may be evaluated for both small and large values
one has calculated the important dynamic length scalef u with the result
Ls(t). On dimensional grounds one would like to infer

E~LZ/t2. This scaling relation certainly holds true in many ul(p+1)[1-2"P*2u+0(u?)], u<1
situations, but it is by no means a universal result. We shali_p(u): [In(u)]P+? 0 -1

attack the problem from the opposite direction by first calcu- (PT+ YIn(W) ]P+O([In(w)]P~7), u>1.
lating the energy decay explicitly. We shall then read off (17)

important length scales from the correlation function in Sec.

IV; comparing the two independent results will then allow us |y order to find the mean velocity potential we must per-

to see if dimensional analysis holds for our particular choicgorm theu integral as given in Eq8). One may see that the

of the initial distribution. . . u integral is dominated byu<1 (>1) when the ratio
Expressinge in terms of the velocity potential, one may (| /1)d/K,>1 (<1). The former case occurs for very large

see from averaging E@2) over the initial distribution that times, and on performing the integral one obtains a diffu-

sion result, i.e.£~t~ (9271 Sg there exists a crossover time
tc~(I2/v)K(2)/d beyond which the nonlinearity is irrelevant
and the velocity potential relaxes according to diffusion. By
aking the initial Reynolds number to be arbitrarily large, we
may pusht. to arbitrarily late times. The interesting nonlin-
ear regime occurs fdp<<t<t, in which case one must per-
form the u integral using the large- asymptotic form for
(¢). In this case one findgusing the variable change
gz[ln(u)]d’2+1 and imposing a lower cutoff o®(1) to the

U integra)

E=d(p(x.1)). (13

So in order to determine the energy decay, we need onl
calculate the mean velocity potential, which in turn is relate
to the average of the function from Eg. (8). In fact, a very
similar function will be central in the evaluation of the cor-
relation function, so it is useful to dedicate a few lines to
deriving an explicit expression fdry).

In order to perform the average it is necessary to impose
lattice scalen, this is because, generally, the initial condition
average has the form of a functional integral, which is only
strictly defined on a lattice. We shall find that for all but the
shortest timegset byt,, the time for diffusion over the cell
sizel) this scalea disappears from all physical quantities
and is replaced by the cell scdlgwhich defines the corre- where o=2(d+1)/(d+2) and C4 is a complicated
lation scale of the initial conditions. Explicitly we define a d-dependent constant.
diffusion length 1p=(4vt)*?> and work in the limit We may reinterpret this expression by defining a time-
a<l|<lp. In other words, the spatial smearing of the heatdependent Reynolds numbi(t). For a typical velocity we
kernel is much greater than the cell size. Performing thdake the square root of the mean energy decay and for a
initial condition average overs using the distribution de- typical (large) length scale we takk, (which we will justify
fined by Eqgs.(4) and(5), we find a posterioriin Sec. I\). Then we have

(K |d|2 )2/(d+2)
£=Cyr2r 2 ~t, (18)
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d]1/(d+2)
K(t)=[CéKo(|—) , (19 ‘If(u,v,r,t)=<ex;{—f do%[ug(y—r/2,t)
D
where the constan€y= " ¥I'(d/2+2) has been chosen +vg(y+r/2,t)]e¢o<y>’ﬂ> (23
for future convenience. We can see th4t) decays from its

initial (very) large value with the power law™ %2+2) yntil
it becomes of order unity whet~t.. In this nonlinear re-
gime[defined byK(t)> 1] we may write the energy decay in

and we have utilized the property of translational invariance.
In an analogous fashion to the averaging performed in
Sec. lll, the average over the initial conditions may be per-

the form formed in a straightforward mannésee Appendix A, yield-
12 ing a complicated expression fdf in terms of the exponen-
E~ —E;)K(t)z, (20) tial integral f_unction._ However, great simplification may be
t made by taking the limiKy>1. In this case we reducé to
the form

which is cast into the form “expected” from dimensional
analysis, except that the dimensionlésat time-dependept IN[¥(u,v,r,t)]=— €l (u,v,R) +O(1K2), (24)
Reynolds number is also present, which invalidates the pre-
diction for the time dependence 6ffrom dimensional con-  wheree=TI"(d/2+2)/K(t)%*2<1,
siderations alone.

The introduction of the time-dependent Reynolds number 2
is useful, but must be justified by independently proving that 1(u,v,R)= WJ dy
Ip is the typical(large length scale in the nonlinear regime.
Alternatively one could insist on the dimensional prediction, Y R[ue*(Y*R/Z)Z_vef(erR/z)z
in which case one would infer the important length scale to x{yz— 5 —R2? ~iR? ]
beLs~IpK(t).[In fact, we shall see that the dynamic length Lue Y +ve v
scale ~I/K(t).] To place these results and speculations —(v—R/2)2 —(V+R/2)2
into a proper context one is forced to evaluate the scaling X{1-expf —ue VR —pe VTR,
properties of the correlation function, which is a much more (25
difficult task than the calculation of the mean energy decay.
and we have defineR=r/I .

At this point of the discussion it is convenient to consider
the small- and large-distance behaviorsGoseparately.

This section constitutes the heart of the paper in that we
present the exact asymptotic forms for the correlation func- A. Small-distance scaling

tion C(r,t) in the nonlinear regimg,<t<t.. Unfortunately, . ) .
in order to arrive at the required result, one must wade 10 ascertain the small distance propertie€ake need to

through a very long and technical calculation. So as not td)erturbatively evaluate the above inte_gra_ls in a power series
burden the reader with details, all technical remarks will be R<1. Although one may attempt this directly on the form
relegated to the Appendixes, with only the general flow ofof the integrals as given by Eq@3) and(25), it is far more
the analysis described in the main text. First, we shall derivéfficient to transform the functiohbeforehand into a natural
a general expression fa& in the nonlinear regime. In the POWEr Series 'fRZ- The procedure for this is described in
subsequent subsections, we shall then analyze the asymptofi@Pendix C, with the result
properties ofC in the limits ofr <l andr>Iy. As hinted at o
before, the main result'of this analysis'is the emergence of a l(u,p,R)=> (R2)pr(u,v), (26)
length scale that describes the small distance behavior of the p=0
correlation function.

It is convenient to defin€ in a symmetric wayfcf. Eq.  where the function& , have the integral form

(12)]

IV. CALCULATION OF THE CORRELATION FUNCTION

(—uvdyd,)P
Cr,H)=([$(—r2,)— $(r/2,)]%) Fo(U)= R T (p rdizs 1) e Ut o). (21

=2(p(0,1)%) = 2(p(—rI2,1)p(r/2,t)). (21)

We are interested in the nonlinear regik@)>1, and in
this case the W,v) integrals are dominated by>1 and
v>1. Therefore, we expand the integtl, 4, appearing in
Eq. (27) in powers ofA=In(u+v)>1 (see Appendix B The
function F, may now be expressed as

By utilizing the integral representation of the logarithm func-
tion twice, we may rewrite the bilinear combinations of ve-
locity potentials in terms of integrals. This yields

C(r,t)=8y2Jx%fwd—v[‘lf(u,v,o,t)—\I'(u,v,r,t)], B (—1)P [Xp(U,v;p+d/2+1)
S (22) Fp(u'v)_1“(|O+1)F(p+o|/2+1)[ (p+df2+1)

where +yxp(U,0;p+d/2) + O(APTH272) |, (28)
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where we have defined As a final remark in this section, we may obtain the
velocity-velocity correlation function from E¢31) with the
Xp(U,0;0) = (Uvyd,)PAI=F (u,0;q) A9 use of Eq.(11). One finds
+0p(U,0;q)AY" 2+ 0(A973). 29 v 2 r
Gp(U,0:0) (AF5). 29 E(r 1)~ &) + I—) S (32)
D

More details of these steps, along with the explicit form of = )

the coefficient{f,} and{g,}, may be found in Appendix D. Agaln, it is interesting to see that 'the mean energy decay
Now that we have a workable series foin the nonlinear  €(t) is not part of the scaling function, which explains the

regime, it is possible to expard (u,v,r,t) in powers of difficulties encountered in Sec. Il with simple dimensional

R? such that the coefficients are various combinations of th&nalysis. It remains to show the scaling importance of the
functionsF, . The integrals oven andv may then be per- diffusive scale: This will be accomplished in the next sub-

formed (see Appendix E for detallsand one has the final S€ction.

result
B. Large-distance scaling
c(rt) 2 d+4 - The scaling form for the correlation function for very
8,2 (d+2) I d+2 KR large|r| may be obtained with relatively little effort. Starting
with C(r,t) expressed in terms of the functidtu,v,R) as
2, (d+3) r d+4 K()?R® given in Egs.(22), (24), and(25), we may express$ by the
3(d+2)?" |d+2 ( series(cf. Appendix B
4(d+5) d+6 (1140 Zo (-1t @i 1) -
— — - m . n—m
a5d+22d+4) " |arz) KO '(U,vvR>—n21 —r " mE:O Chu™
4(d+5)(d+7) d+8) . m
T edr22d+a%d+6) |dr2/ KR ><e><n[—g(n—m)R2 - (33
+O(RO)f+. ... (30) As C(r,t) is nonzero folr|—o, it is convenient to measure
correlations with respect to the asymptotic valgéx,t).

Thus we define
Several remarks are now in order. First, the above result is
given (after much effort to quite high order irR?. One is
obliged to do this to determine unambiguously the scaling »du (=dy
properties of the correlation function. Second, the result for =8vzf —J' —[¥(u,v,r,t)—¥(u,v,o,t)]
C has been written in such a way as to stress the form of the o UJov

8C=C(o,t)—C(r,t)

scaling. It turns out that the dominant term at each order of =du (=dv

R? vanishes exactly, except for the dominant teatrorder :szf —j —{exd — el (u,v,R)]

R?: This explains why this term stands alone in the above o UJow

expression. The subdominant terms from each order are non- —exfd —el(u,v,»)]}. (34)

zero and are grouped together within the curly brackets. The
remaining terms play no role in determining the leading scal- From Eq.(33) it is easy to see
ing behavior and are indicated by the ellipsis. The fact that

the dominant terms vanish means that the lead®Agerm o D™ e

can play no part in the scaling form of the correlation func- |(Uav,°°):nzl Tn (u+o")

tion. However, the terms in curly brackets have a natural

scaling form that allows us to read off a dynamic length [Lap(u)+Lgo(v)]

scale. Explicitly we may recast the above expression into the =T rdize1) (35

scaling form(neglecting constanks
where we have rewritten the sum in terms of the familiar
2 ()2 r integral L 4, [using the integral representation shown in Eq.
C(r,t)~v? S o/l

(3D  (C#6)]. In the nonlinear regime, we are interested in the large

L(t Ip
® b (u,v) behavior, which according to EqL7) gives us
where S(x) is the scaling function and the dynamic length 1 Wit i1
scale isL(t)=1p/K(t)~t* with a=(d+1)/(d+2). |(U,v,°°)~m{[|n(u)] 4 [In(v)]° 4
We see that in the nonlinear regime, the dynamic length (36)

scale is much smaller than the diffusive sdgje although it

is growing faster. This gives us another view of the crossover Returning to Eq.(33), the largelR| form for | may be
from nonlinear to linear evolution; i.e., the dynamic Rey- written as

nolds number becomes of order unity when the stalg

becomes of the same order las I(u,0,R)=1(u,v,00)— 2" (@2 Dyye-R24 ... (37
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Substituting this result into E¢34) gives the leading term of B\ 2 P
5C as Z—(—) f ddxexp{ B Ex2+V(x) ] (41)
SC~ 4—1:,:;J(K)2e‘ R2/2, (38) Whe_reB is the inverse tempefature and we have nor.malized
2 Z with respect to the harmonic background. For a given re-
alization of the disorder potentidl, we may calculate the
where free energy of the particle from, = —(1/8)In(2).

At this stage we compare the expression for the free en-
J(K)= J'wduexp{— K(t)~@*2[In(u)]92* 1, (39) ergy With_ the exact solution of the B(;évaluateq at the ori-
c gin) as given by Eq(6). We see that there exists an exact
equivalence between the two quantities if one makes the fol-
(c being a number of order unity lowing connections:¢(0,t) < —Fy,2v« 1/8,t—1/u, and
The integral may be performed by steepest descents in thg,(x) < —V(x). This correspondence holds regardless of the
nonlinear regimedetails in Appendix Bwith the result that  particular distribution of initial conditiongor equivalently,
6C has the final asymptotic fornneglecting overall con- disordey.

stantg To proceed with the description of the toy model, two
quantities one may be interested in calculating are the
SC~ 12K (1) 4~ P dex ] CIK (1) 29+ /¢ ex] —r2/212], quenched free energf=(F,) and the mean-square dis-

(40 placement of the particle

whereCj=d(d/2+ 1)~ 29 we see from this expression 1 M
that the diffusion scalk, is the natural scaling length for the (x%)= <_f ddxxzexp< —B EX2+V(X) }>
correlation function, for very large distances. One may as-

certain the range of validity of the above expression by cal- ~(—(2/B)3d,In(2))=29,F. (42)
culating the contribution from the next term in the series
[from Eg. (33)], and one finds that the above form is valid
for [r|> 1KY [=(vte) V2> 1p].

Before ending this rather technical section, we shall reca-
pitulate the main results obtained. By performing an exact (X3 =24 JF=—201,((0,)) = 2123, $(0,1)) = 2t25(t)
analysis on the correlation functidd(r,t) in the nonlinear
regime, we have been able to confirm that there indeed exists
dynamical scaling, albeit of a rather subtle type. The smallvhere we have made use of EG3). So we have been able
distance properties of are governed by a scaling length to show that the dimensional prediction for the mean energy
L(t)~Ip/K(t), but the dominant term i is singular, i.e., decay, namely£(t)~L¢(t)%/t?, has a formal interpretation
it may not be included into the scaling form. This indicatesin terms of the toy model as long as we interdrgft) as the
why the form of the mean energy decay found in Sec. Il wagoot-mean-square displacement of the particle.
not obtainable by simple dimensional analysis. The scale We shall now derive an approximate form far(t)

L(t) is much smaller than the diffusion scale, but growswithin the toy model formulation. Consider first the top-hat
faster: The nonlinear regime crosses over to simple diffusiowlistribution that has been the subject of the present work. We
when these two length scales become compatible. The largake P[V] =TT e (Veen), With p(V)=6(D—|V|)/2D. The
distance scaling was found to be more conventional in thastrong turbulence limit of the BE corresponds to the zero-
the dominant part o€ (with respect to its asymptotic value temperature limit of the toy model. In this case, the particle
is a simple function of /Iy, albeit with a complicated pre- will be trapped in the lowest potential-energy minimum,
factor, thus indicating thaty acts as the dynamic scale for within a given realization. In this case we may estimate the

By utilizing the correspondence with the BE, we may relate
the mean-square displacement to the quag\ty in the BE.
Explicitly we write

the correlation function at very large distances. excursion of the particle by calculating the probability
g(r,U*) for the lowest potential site to be located at a dis-
V. SCALING ARGUMENTS tancer from the origin and to have an enert)*. This will

be proportional to the probability that all sites within a radius
This section has two purposes. First, we shall show am of the origin have a potential energy higher tHah.
exact mapping between the solution of the BE and the free For a general potential distributign(V), we may write
energy of a popular toy modg26] in the field of disordered
systems. Second, we shall perform some simple scaling cal- « 5 *
culations[27] on the latter model to extract the form of the q(r,U*)~p(U* —ur /2)|X],1, *_sz,zdvxp(vx)'

mean energy deca§(t) in the original BE problem. These (44)
scaling calculations are very similar in spirit to the original
calculations of Burgergl4] and Kida[15]. In the BE analogy we are interested in long times, so within

The toy model in question is simply described. Consider ghe toy model we need to take to be small, i.e., the har-
single particle in a potential composed of a harmonic backmonic background is taken to be very “flat.”
ground plus a random potenti®gl(x). If the particle is in Restricting our attention to the top-hat distribution, we see
contact with a thermal reservoir, we may write the partitionthat a flat harmonic background implies that the minimal
function for the particle as energyU* will be close to the lower bound of the random
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potential —D. We therefore setU*=-D+ 68U, where gion of support and is uncorrelated in space. In Sec. lll we
|8U|<D. The above expression then reduces to calculated the mean energy dec&y) in the nonlinear re-
gime [i.e., in the temporal regime in which the Reynolds
1
ruU*)~—
q(r,u*) 2D\ﬂr

numberK (t)>1]. Explicitly we found
It is now straightforward to exponentiate the term in square
brackets so as to transform the product oxeas a spatial
integral in the exponential. Takingr?<D (which is justi-  Dimensional arguments applied at this stage would then
fied a posterioriby the form ofr,, given below allows the  predict that there exists a dynamical length schlgt)
integral to be performed simply, yielding the final result  ~I1pK(t), wherelp~ (vt)¥? s the diffusion scale.

In Sec. IV we set out to establish this result by calculating
the two-point correlation functio®(r,t). This task is non-
trivial, but we were able to extract the small- and large-scale
asymptotics ofC. There were two unexpected results. First,
wherec, andc, are constants. For this distribution of poten- the small- and large-scale forms Gf although assuming a
tial minima at distance from the origin, we can read off a scaling form, have different dynamic length scales. For the
scaling relation between the typical value ofand u, small-distance scaling, the dynamic length scale was found
namely, to be L(t)~Ip/K(t) and the dominant part o€ in this

spatial regime is singular and cannot be included in the scal-
ing function. In terms of the velocity-velocity correlation
(47 function E(r,t), this singular piece is exactl§(t), with the
scaling part of the correlation function describing the nonlo-
Making the correspondence with the BE, we identify cal properties ok, i.e.,
rypeLs(t) and ,LL/D<—>(|2DK0)_1. Combining the above re- 5 ;
sult with Eq. (42), we see that we have derived the_correc.t E(r,t)~&(t) + 'é( _) (49)
form of the mean energy decay as calculated previously in L(t)
Sec. llI[cf. Eq.(18)], although the precise value of the pref- _
actor may not be obtained by this simple scaling argument.The scaling functionS(x) has a power series expansion in

The above result may also be cast into the formx?, the first four coefficients of which may be inferred from
Ls(t)~IpK(t). This is guaranteed under the scaling hypoth-Eq. (30). The large-distance scaling was found to be de-
esis, but what is interesting is that such a length scale playscribed by the diffusive scallg, , which confirmeda poste-
no role in the actual dynamical scaling as defined by theiori the choice of this length scale in constructing the dy-
behavior of the two-point correlation function. In other namic Reynolds number. The leading term in this large-
words, although we may calculate; (or ratherry,,) from  distance regime was found to be
scaling considerations of the toy model, this length scale is
not a dynamic scaling length; for instance, it could not be SC~ 2K ()4~ 9 dex C/K (t)2@+ 2/ ex —r%/22].
used to collapse the correlation function in a scaling plot. (50

To end this section, we mention that the toy model may
be analyzed for other types of distribution. If one takes theThe second unexpected result is that neither of the two dy-
disorder distribution to be of the cellular type, wigh a  namic length scales coincides with the scalefound from
Gaussian, then one may rederive the result of Kjitia], dimensional considerations é{t). This is explained in part
namely, thatL(t) is a diffusive scale up to logarithmic cor- by the fact that the local energy decay is singular and not
rections. Alternatively one may consider the toy model incontained in the scaling form fdE. This result is similar to
d=1 with a disorder distribution corresponding to the origi- the cases in critical phenomena where caution is required in
nal Burgers choice, namelp[ V]~ exf — [dx(dV/dX)?]. This ~ reading off scaling dimensions from composite operators
particular scenario has been studied in detail recently, usingsuch as/?) [10]. Generally, these composite operators have
a replica approacf28]. Although the essential Burgers scal- their own scaling dimension, which may be related to the
ing [L4(t)~t?%] is easily recovered, the calculation of pref- scaling of a two-point correlation function only via a small
actors is more difficult. It is an important test of various distance expansiofotherwise known as an operator product
approaches as to whether they can quantitatively predict th@xpansion.
correct prefactor. As far as we are aware, this is still an open In Sec. V we introduced a mapping between the BE and a
problem, although there are a number of approximate value®@y model that is well known from the field of disordered
in the literature[14,16,28. systems, that being a thermal particle in a harmonic back-
ground along with a random potential. By considering simple
scaling calculations on the toy model, we were able to repro-
duce the previous result faf as found in Sec. Ill(up to

This paper has been concerned with proving dynamicaprefactorg. The scale.g appears naturally in the toy model
scaling for Burgers equation with random initial conditions. (as the typical root-mean-square displacement of the particle
Exact calculations have been possible for a distribution ofind it is interesting that this scale is not a true dynamical
the initial velocity potential, which has a large but finite re- scaling length in that it may not be used to collapse the

U ux?

" ) W

|2
E~ t—BK(t)Z. (48)

1 Sir d Mrd+2
q(r,5)~ﬁex —C1(d)5(|—) +Cz(d)_|dD_

, (46)

[dp )\ H(d+2)
|2
yp “w

14
Ip

VI. CONCLUSION
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two-point correlation function in a scaling plot. It would be re-exponentiated, so that the product over cells in BQ)
interesting to understand this result more fully either by permay be written in the exponent as a sum over cells. Second,
forming similar calculations to those described here for otheiwe use the fact that for times greater thgre 12/ v, the heat
choices of initial distributions or by calculating higher-order kernel has smeared beyond the cell scale, so that the sum
correlation functions to see if more exotic forms of scalingover cells(on a scald) and points within cell{fon a scale
(such as multiscaling or intermittencyre present in these a) may be replaced once more by a continuum spatial inte-
simple models. The connection between the toy model andral. In this way one finally arrives at the result given in the
the BE may be of some mutual aid in both fields, at least irmain text.

supplying an intuitive understanding of these complementary

problems. APPENDIX B
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APPENDIX A We require both the small- and largeforms for this inte-

gral. The former is trivially obtained by expanding the inte-
grand as a power series in The asymptotic expansion of
this integral foru>1 is less simple. For the precision re-
quired in the calculations, we need both the dominant and
Y= exp{ —uJ’ dig(y,t)exd ¢o(y)/2v]}, (Al)  subdominant terms. To extract these we proceed as follows.
We notice that for large, the second factor in the integrand

where we have taken advantage of translational invariancgéhaves very much like a step function centered at

and setx=0. (In fact, the translational invariance holds only S=IN(U). Thus the dominant term will arise from replacing

for times greater thaty since clearly the cellular initial con- this factor by #(In(u)—s) and the subdominant term will

ditions allow only invariance under discrete transformations2ise from finding the leading error made by this approxima-

over a period. Once the heat kernel has diffused beyond the!on- . ,

cell scale, the continuous translational invariance is recov- S0 €xplicitly we write

ered) The initial distribution is as described in Sec. Il, In(w) "

namely, we divide space into cells of volurtfeand within Lp(U):f dssP+f ds<T(s), (B2)

each cell we assign the velocity potential to be an indepen- 0 0

dent random number drawn from a top-hat distribution of

width 2d. Explicitly we have where T(s)=[1—exp(-ue *)]—é(In(u)—s). The first term
gives the dominant contribution to the integral, which equals
[In(u)]P*Y(p+1). To extract the main contribution from the

<¢>:J Do(yi) PL ol ¥l ¢0l second term, we replac® by [In(u)]° and perform the inte-

gral overT(s):

In this appendix we outline the initial condition average
over the function

1 (o
=Hﬁf depo(Y) - -
Y -o fdssDT(s):[m(u)]Pf dsT(s)+O([In(u)]P~1)
0 0

xexp{—uexrisbo(Y)/ZV] > g(y,t)], (A2) »
yieY :[|n(u)]PU dy1—expg —ue )]
In(u)
whereY labels the cells angl; labels the discretized points n
(on a scale of the lattice cutof) within a given cell. The In(u) _ 1
integrals are easily performed in terms of the exponential o dsexp(—ue®)  +O([In(w)]*~5).
integral[25]

(B3)
1 (@
EJ dooexd —Aexp(do/2v)] The first integral in the curly brackets may be evaluated sim-
- ply (using the variable changeq=e %) to give
1 ¢, (—1)"/nn!, while the same variable change reduces
= K—O[El(Ae_KO/Z)— Ei(Ak0?)], (A3)  the second integral to

whereK,=®/v is the initial Reynolds number as defined in fln(U)dsexp(—ue’S)= fud_qeq: E,(1)+O(e Yu).
the text. To reach the result shown in the text, namely, Eq. Jo 19
(14), two more steps are required. First, the above result is (B4)
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Using the series expansion for the exponential intetdl,  where
we may combine the two results to give

2 2 2
* An(u,v,R)= fdd [ Jue VR4 e (YR
[“dsemi = vnwproqmwry, @y T ] S :
0
Y R y-R2? —(y+R/2)%n-1
where y=0.577 2. .. is Euler's constant. This is the re- ——[ue VTR pem TR
quired result for the subdominant terms.

The second integral appears in the evaluation of the large Y Tue--R?_ | o~ (y+R2)2 c3
distance scaling in Sec. IV. Referring to E§9), we need to [ue ve If- (€3
evaluate

. This cumbersome expression may be simplified greatly by
J(K):f duexpg{—K(t)~@*2[In(u)]92* 1, (B6) expanding the terms in square brackets as binomial series in
c powers ofu andv and then performing the Gaussian inte-

. . _ _ grals overy. One is then left with
in the nonlinear regim&(t)>1. The constant is a number

of order unity and arises since we have used the larfpgem n
for the integrand, and so we must cut off the integral at theA (u,v,R)=n"(¥2*1 2 Chumpn- mex;{— —(n m)RZ}

lower end. For notational convenience let us consider Ca

Mp(N) = L duexp{—(1/N)[In(u)]°} (B7)  Combining Egs(C2) and(C4) reproduces the large-form
given in Eq.(33).

for N>1, with b>1. Then we can retrieve the integral of N Order to castA into a smallR form, we expand the
interest fromJ(K) =M g/, 1(K9*?). exponential terms in E4C4) and then binomially resum the

In order to cast the integral into a form suitable for steep-S€Mes inu andv. This leaves us with
est descents, we make the variable change
X= N‘l’(b‘l)ln(u). We then have

2)p
A(u,v,R)=n (d/2+1)2 (=R
p=0 n°p!

Mb(N)=Nl’(bfl)fmdxexp:—Nl’(bfl)(xb—x)]. (B8) (€9
0

(Uvd,d,)P(u+v)".

We now substitute this expression back into EG2) and
This integral is easily performed by steepest descents to givake the integral representation
(neglecting overalb-dependent constants

(b_ 1) N 1/(b—1)
5|

n—<P+d/2+1>=[r(p+d/2+1)]—1f dsg*d2e™ns,
0
b

(C6)

Mb(N)~N1’2(b—1>exp[ , (B9

from which one may retrieve the form given in Eg0). This allows the sum oven to be performed as that for a

geometric series and we are left with
APPENDIX C

oo

In this appendix we give details of the manipulation of | R)— 2 (—R?)P
I(u,v,R) into a series expansion for small and lafgeAs (U, )_p:0 F(p+1HI'(p+d/i2+1)
given in Eq.(25), we have

X (Uvdyd,)PLpygp(Utv), (C7)
2
I(u,v,R)= Wﬁf ddY[ y? as given by Egs(26) and(27) in the main text.
y-R| ue<VR’2)2—ve<V+R’2>2H APPENDIX D
- —(v_R/2)2 _ 2
2 [ue V=R 4 ye VR This appendix will give details of the rewriting of the

functionF ,(u,v) in moving from Eq.(27) to Eq.(28) in the

_ e (y-R22_ . —(y+R/2)? ) 4 .
X{1-exd —ue VR —pe  VTRAT, main text. As given by Eq(27), we have defined

(CY
(—uvd,d,)P
As a first step, we expand the exponential term in the second ~ Fp(u,v)= T(p+ D (p+di2+ 1) Lop+ar(Utv).
factor of the integrand to obtain (D1)
* -1 n+1 . . i . .
2 Aq(u,0,R) (%) Since we are interested in the nonlinear regime, we may

n=1 expand the integrdl as shown in Appendix B, namely,
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Ap+d/2+1

— p+d/2 p+di2—-1
Lp+d,2(u+v) (p+d/2+1)+’yA +O(A ),

(D2)
where A=In(u+v). Then we define the quantities

xp(U,v;9)=(uvd,d,)PA%, which allow us to rewrite the
above expression as

(—1)P [ xp(u,v;p+d/2+1)
M(p+1)I(p+di2+1)] (p+d2+1)

Fo(u,v)=

+yxp(u,v;p+d/2)+ O(APTH272) | (DJ)

which is of the form given in Eq(28) in the main text.

The above steps are largely a matter of redefinition of
various quantities. We must extract explicit forms for the

functions xp(u,v;q). Clearly the zeroth function is just

xo(u,v;q) =AY The subsequent functions may be written as

Xp(U,v;0) = (Uvdyd,)PAI="f,(u,v;q)A9"?

+0,(u,0;0)A2+0(A973). (D4

In order to determine unambiguously the scaling propertie

of the correlation function, it is sufficient to explicitly evalu-
ate C to O(R®). However, given the singular nature of the
scaling in this problem, we shall proceed to calculate th

tates calculating the coefficientg and g, for p=1,2,3,4.
With the application of brute force algebra, we obtain

uv

fl(U,v;Q)z—qm—v)z,

uv ) )
fz(U,UJQ)=+qW(U —4uv+v9),

uv

fa(u,v;q)= —qm(u4—26u3v

+66u%v2—26uv3+v?),
uv
fi(u,v;q)= +qm(u6—12015v+1191u402
—2416:%03%+ 1191%v* - 120uv°+ "),
(DY)

and

g1(u,v;9)=—(q—1)fy,

uv?

gx(u,v;q)= —2(q_1)f2_Q(q_1)(u+—U)4:

gs(u,v;q)=—-3(q—1)f;
2.2

u-v
———(17u?—52uv + 17v?),

+q(q_1)(u+v)6
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u?v?
ga(u,v;0)=—4(q—1)f4—q(q- 1)m
X (12u%— 164813y + 35381202
— 1648103+ 12%%). (D6)
APPENDIX E

In this final appendix we give a brief description of the
final steps required in order to perform theandv integrals
so as to derive the final form of the correlation function
given in Eq.(30). Referring to the main text, we see that
combining Eqs(22), (24), and(26), we may write the cor-
relation function in the form

=du (=d
C(r,t)=8v2jC TJL Fvexp[—eFo(u,v)]

foof e, @

wherec is a number of order unity, required simply to cut off

)

—€>, RZpr(u,v)
p=1

éhe integrals at their lower limits, given we are using the

asymptotic form for the integrand in the nonlinear regime.
The remaining steps are easy to describe, although rather
tedious to perform in practice. We expand the exponential in

O(r®) terms as well, as a useful check. This in turn necessﬁhe last factor of the above integrand in power&aind then

integrate oveiu andv. We shall explicitly demonstrate this
for the dominant part of theO(R? term. Using the
asymptotic forms of the functioris, andF, from Appendix
D, we have

o Pt deufmdvf 24di2
(RY (di2+2)C(d/2+2) )¢ u Jc v 1(U,v; )
di2+1 —; d/2+1

XA exr{ razr 2 | (E2)

Remembering thate=T'(d/2+2)/K(t)9*? and using the
form of f; from Appendix D, we may rewrite this term as

[O(R?) term]~8v2K(t)*<‘”2>J’mdufmdv(quv)’2

X Ad/2+1exq _ K(t)f(d+2)Ad/2+1]_
(E3

Now the double integral has the form

Lxdufjdv(quv)*zA(UJrv): LxdufudeWJA(W)

F%A(u),

c

(E4)

where the last step was achieved using integration by parts
on u. The final integral may be easily performed by substi-
tuting x=In(u), thus yielding the first term in Eq(30).
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The integrals required at higher ordersRA may all be  power) A final point worth mentioning is that the subdomi-
performed by changing variables fromu,f) to nant terms(i.e., those terms involving the coefficiengs)
(u,w=u+v) and performing the appropriate number of in- are required since thau(v) integrals over the leading terms
tegrations by parts oru. In general, the “boundary” containingf, all vanish forp>1. This leads to the unusual
terms do not vanish, but they are negligible in the limit of scaling form described in the text, in which the dominant
interest, namely,K(t)>1. (This is because the general term may not be cast as part of the scaling function, and
form of the functionA(w), which appears as a spectator explains our cautionary calculation of tagR®) term, which
in these integral manipulations, is proportional toindeed confirms this singular scaling, i.e., the integrals over
exp{—K(t)~@*[In(w)]¥2*1}, which decays faster than any f, vanish exactly.
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